Weak quasi-randomness for uniform hypergraphs
نویسندگان
چکیده
We study quasi-random properties of k-uniform hypergraphs. Our central notion is uniform edge distribution with respect to large vertex sets. We will find several equivalent characterisations of this property and our work can be viewed as an extension of the well known Chung-Graham-Wilson theorem for quasi-random graphs. Moreover, let Kk be the complete graph on k vertices and M(k) the line graph of the graph of the k-dimensional hypercube. We will show that the pair of graphs (Kk,M(k)) has the property that if the number of copies of both Kk and M(k) in another graph G are as expected in the random graph of density d, then G is quasi-random (in the sense of the Chung-Graham-Wilson theorem) with density close to d.
منابع مشابه
Hypergraphs, Quasi-randomness, and Conditions for Regularity
Haviland and Thomason and Chung and Graham were the first to investigate systematically some properties of quasi-random hypergraphs. In particular, in a series of articles, Chung and Graham considered several quite disparate properties of random-like hypergraphs of density 1/2 and proved that they are in fact equivalent. The central concept in their work turned out to be the so called deviation...
متن کاملQuasi-Random Hypergraphs and Extremal Problems for Hypergraphs
The regularity lemma was originally developed by Szemerédi in the seventies as a tool to resolve a long standing conjecture of Erdős and Turán, that any subset of the integers of positive upper density contains arbitrary long arithmetic progressions. Soon this lemma was recognized as an important tool in extremal graph theory and it also has had applications to additive number theory, discrete ...
متن کاملEquivalent Conditions for Regularity
Haviland and Thomason and Chung and Graham were the first to investigate systematically some properties of quasi-random hypergraphs. In particular, in a series of articles, Chung and Graham considered several quite disparate properties of random-like hypergraphs of density 1/2 and proved that they are in fact equivalent. The central concept in their work turned out to be the so called deviation...
متن کاملQuasi-random hypergraphs revisited
The quasi-random theory for graphs mainly focuses on a large equivalent class of graph properties each of which can be used as a certificate for randomness. For k-graphs (i.e., k-uniform hypergraphs), an analogous quasi-random class contains various equivalent graph properties including the k-discrepancy property (bounding the number of edges in the generalized induced subgraph determined by an...
متن کاملQuasi-random hypergraphs revisited
The quasi-random theory for graphs mainly focuses on a large equivalent class of graph properties each of which can be used as a certificate for randomness. For k-graphs (i.e., k-uniform hypergraphs), an analogous quasi-random class contains various equivalent graph properties including the k-discrepancy property (bounding the number of edges in the generalized induced subgraph determined by an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 40 شماره
صفحات -
تاریخ انتشار 2012